



| Department             | Course Name           | Course Number | Semester |
|------------------------|-----------------------|---------------|----------|
| Mechanical Engineering | Rotary Wing Aircrafts | 0994562       |          |

### **2025 Course Catalog Description**

Fundamentals of aerodynamics and fluid flow concepts for developing rotary wing aircraft performance. Two-dimensional aerodynamic characteristics of airfoils and their application in helicopter design. Means for augmenting lift and the effects of various types of high lift devices on the aerodynamic characteristics. Aerodynamics of finite aspect ratio wings leading to the fundamentals of airplane performance calculation. Theory of helicopter hovering and vertical flight including autorotation and the aerodynamic behavior of the rotor and helicopter in forward flight. Introduction to airplane and helicopter stability.

### **Instructors**

| Name | E-mail | Section | Office Hours | Lecture Time |
|------|--------|---------|--------------|--------------|
|      |        |         |              |              |

### **Prerequisites**

|                                |         |
|--------------------------------|---------|
| <b>Prerequisites by topic</b>  |         |
| <b>Prerequisites by course</b> | 0994363 |
| <b>Co-requisites by course</b> |         |
| <b>Prerequisite for</b>        |         |

### **Topics Covered**

| Week | Topics |
|------|--------|
| 1    |        |
| 2    |        |
| 3    |        |
| 4    |        |
| 5    |        |
| 6    |        |
| 7    |        |
| 8    |        |
| 9    |        |
| 10   |        |
| 11   |        |
| 12   |        |
| 13   |        |
| 14   |        |
| 15   |        |

### **Evaluation**

| Assessment Tools | Expected Due Date | Weight |
|------------------|-------------------|--------|
|------------------|-------------------|--------|



|  |  |  |
|--|--|--|
|  |  |  |
|  |  |  |

**Contribution of Course to Meet the Professional Components**

**Relationship to Student Outcomes**

| SOs                 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---------------------|---|---|---|---|---|---|---|
| <b>Availability</b> |   |   |   |   |   |   |   |

**Relationship to Aeronautical Engineering Program Objectives (AEPOs)**

| AEPO1 | AEPO2 | AEPO3 | AEPO4 | AEPO5 |
|-------|-------|-------|-------|-------|
|       |       |       |       |       |

**ABET Student Outcomes (SOs)**

|          |                                                                                                                                                                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1</b> | An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics                                                                                                  |
| <b>2</b> | An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors                   |
| <b>3</b> | An ability to communicate effectively with a range of audiences                                                                                                                                                                            |
| <b>4</b> | An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts |
| <b>5</b> | An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives                                                 |
| <b>6</b> | An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions                                                                                                |
| <b>7</b> | An ability to acquire and apply new knowledge as needed, using appropriate learning strategies                                                                                                                                             |

**Updated by ABET Committee, 2025**